
28

GEC REVIEW, VOL. 14, NO. 1, 1999

The SIMTEC Simulation Framework

by D. F. BUCKLE, B.Sc., M.Sc.

EASAMS Defence Consultancy

SIMTEC� is a large C++ object oriented (OO)

simulation framework developed by EASAMS

Defence Consultancy and sponsored by Weapons

Sector of DERA Farnborough. Although it was

developed to meet the sponsor's requirement to

study electronic combat in particular, SIMTEC is a

general�purpose simulation tool capable of

addressing a wide range of scenarios. This paper

provides a short summary of SIMTEC and its

potential benefits to its Users and Developers.

The paper makes two main points:

� SIMTEC is a large model that can represent

many different types of interaction between

military units in simulated battlespaces at a

variety of fidelity levels; and

� SIMTEC is an initiative in software re�use,

with several innovative techniques being

applied so that the software can be used to

produce a wide range of new applications -

and to ensure that each new application

can work with all the others.

Thus, SIMTEC provides Users with immediately

useful functionality and is also a major enabling

capability for Developers wishing to produce new

simulations.

The paper explores the above two points by

summarizing the current functionality of SIMTEC

and giving an overview of the techniques used to

achieve reusability. The paper argues that, in

order to achieve the full benefits of reusability, it is

necessary to establish a pool of Users and

Developers who employ the same framework, and

that framework must combine the benefits of:

� a library of reusable components;

� 'plug�and�play' interfaces* to co�ordinate

the operations of models constructed from

these components;

� SIMTEC is the SIMULATION Tool for Electronic Combat

* `Plug�and�play' interfaces are defined protocols that allow

different modules or programs to work together whilst being
treated as `black boxes'.

Dave Buckle is a consultant with 15 years'

experience at EASAMS. With a Mathematical

Physics background, his career at EASAMS

began in the Operational Analysis (OA) field,

particularly with regard to the modelling and

study of radar and electronic warfare systems.

Over the last ten years, however, he has become

increasingly interested in the application of OO

techniques to simplify program structures and

achieve software reuse. The combination of

experience in OA modelling with OO analysis

and design has culminated in his major role in

the development of the SIMTEC architecture.

(E�mail: dave.buckle@gecm.com)

� techniques to permit models to be adapted

by data configuration wherever possible;

and

� the use of commercial off�the�shelf (COTS)

tools.

The SIMTEC approach is compared with other

techniques, such as the use of Distributed Interac�

tive Simulation (DIS) and High�Level Architecture

(HLA) initiatives, that serve to link separately�

developed simulations together. It is suggested

that, with the right techniques, the use of a single

framework, such as SIMTEC, and the DIS/HLA

approach are complementary.

Functionality of SIMTEC

The SIMTEC framework is divided into two

elements: the 'User Environment' and the

'Modelling'. The User Environment provides an

integrated system for defining, executing and

analysing simulation runs (implemented by the

Modelling Element).

SIMTEC models are highly data configurable

and the User Environment supports this approach.

As shown in fig. 1, it is based around a central

'SIMTEC Database' that stores:

� definitions of all the 'generic data' needed to

construct one or many scenarios - for

example, definition of platform components,

such as particular types of equipment

and electromagnetic signatures, the

configuration of these components into

complete platform types, and so on;

� the 'instance data' needed for individual

scenarios - for example, the environmental

parameters, plus the numbers and types of

different platforms, together with their initial

motions;



29THE SIMTEC SIMULATION FRAMEWORK

GEC REVIEW, VOL. 14, NO. 1, 1999

1 The SIMTEC User Environment

� the run�parameters - for example, lists of the

variables to be logged during a simulation

run and a description of whether single or

Monte�Carlo runs are to be performed; and

� Player Displays - the User Environment

supports simple, but very configurable

displays, whose specifications are stored in

the SIMTEC Database.

The User Environment supplies a Graphical

User Interface (GUI) that provides the above faci�

lities in a windows format consisting of data entry

forms, browsers and 2�D�/�3�D Player Displays. The

User Environment automatically configures itself

to the code in the Modelling Element, generating

the required database layout plus data entry

forms, browsers and displays compatible with this

code.

The User Environment performs the automatic

configuration by analysing the code of the C++

objects in the Modelling Element to compile a

'Model Map'. This contains data descriptions of all

the modelling objects, including the name of each

object, a list of its routines and the input/output

parameters of those routines. As shown in fig. 1, all

the other elements of the User Interface ultimately

link to the Model Map, thus permitting the User

Environment to be completely generic, yet

sensitive to the structure of the code in the

Modelling Element.

Within the Modelling Element, SIMTEC provides

a sophisticated Battlespace Model representing

the arena in which scenarios occur. A terrain data�

base is used to represent both the elevation of the

land and the different culture types it consists of,

each of which can be described in terms of its back�

scatter and forward scatter properties. (The sea is

considered a particular `culture' type with a wave

structure elevation.) The atmosphere is modelled

in the way in which it affects electromagnetic

propagation and induces drag, and a variety of

atmosphere profiles are available. In addition,

weather volumes, such as clouds, and rain belts

moving in the atmosphere can be represented.

The Battlespace Model is coupled to a powerful,

ray�path based representation of electromagnetic

propagation, that includes attenuation, reflection,

refraction and multipath effects.



D. F. BUCKLE30

GEC REVIEW, VOL. 14, NO. 1, 1999

The SIMTEC framework currently supports a

single (although very powerful) application called

the integrated platform model. This model is a

generalized representation of a military platform

consisting of a superstructure upon which items of

equipment can be located and a mechanism for

controlling these items of equipment so that the

platform as a whole behaves in an integrated

fashion.

The integrated platform model is OO in nature.

That is, many different instances of the same

integrated platform model can be created at run�

time to represent the different platforms, such as

ships, aircraft, surface�to�air missile (SAM) units

etc., that interact in a simulated battlespace.

In view of the above, the different instances of

the integrated platform model differ from one

another only in their data. However, the integrated

platform model does exhibit a high degree of data

configurability in the sense that the User (and not

the coder) can represent fundamentally different

types of platform, such as the ships, aircraft and

SAMs mentioned above, by defining different data

configurations of the common integrated platform

model.

Thus, to represent a particular scenario, the User

sets up generic data sets defining the different

types of platform to be studied. One or more sets of

instance data are then set�up for each generic

data set to define the initial motions of the individ�

ual platforms participating in the simulation run.

The User can data configure different types of

platform because the integrated platform has a

sophisticated internal architecture consisting of

`components' linked by plug�and�play interfaces.

The architecture of the integrated platform

model is shown in fig. 2. It consists of a superstruc�

ture component representing the physical ̀ shell' of

the platform upon which other components can be

associated via the supplied plug�and�play

interfaces, that is:

� A signature component that represents the

way in which the platform reflects and

radiates energy. A flexible set of signature

components is provided, including

2 Architecture of the integrated platform model



31THE SIMTEC SIMULATION FRAMEWORK

GEC REVIEW, VOL. 14, NO. 1, 1999

multi�source radar and optical/infra�red

representations. One platform can have

several signatures located on it. A plug�and�

play interface allows the location to be

defined in terms of a mounting point that

gives each signature a definite position and

orientation (that is - yaw, pitch and roll)

offset from the superstructure centroid.

� Kill mechanisms and vulnerability

components, which represent the ability of

the superstructure to inflict damage on other

platforms and, in turn, suffer damage. The

current suite of components of this type

allows both physical impact and explosion

interactions to be represented. The supplied

plug�and�play interface allows the User

to indicate the lethal interactions in which

the platform as a whole can participate

by associating the appropriate kill

mechanisms and vulnerability components

with the superstructure. Another interface

allows individual items of equipment to be

knocked out or inflict damage (for example,

warhead explosion).

� An equipment component represents an

item of equipment located on the platform.

A range of equipment components are

available, including:

- sensors, for detecting other platforms,

which may be radar, electro�optic (EO),

infra�red (IR) or electronic support

measure (ESM) devices;

- weapons systems, for engaging

platforms such as missile launchers,

decoy launchers, jammers and

warheads;

- comms units, for, relaying messages to

other (friendly) platforms;

- guidance computers, for controlling the

motion of own platform, which can

presently manage either predefined -

for example, multi�waypoint motion - or

implement missile guidance laws, such

as proportional navigation or

command�to�line�of�sight.

� A plug�and�play interface similar to that

used for signatures allows equipment

components to be located on mounting

points.

� Each platform has one track formation

component and one situational awareness

component. The track formation component

takes the output from the sensor type

equipments and use this to form tracks on

the targets in the platform's vicinity. In this

case, the plug�and�play interface requires

that all sensors report in a common format.

The supplied track formation process can

also use data fusion to merge tracks

received from other platforms (via comms

units). Note that the target tracks are

sophisticated descriptions holding the

perceived positions and motions of the

detected targets and the errors in these data

plus additional information such as the

assumed target classifications, allegiances,

emission characteristics etc. The situational

awareness consists of the target tracks

marked�up with additional information

about the way the platform has deployed its

equipments against those tracks as

discussed next.

� Equipment controller components exist in

one�to�one correspondence with the

equipment components. Each equipment

controller operates by deploying the item of

equipment it manages against one or

several tracks or (alternatively just

switching it on or off). The equipment

controllers are data configured with rules

set up by the User. These rules are based on

filtering the tracks in the situational

awareness to determine potential

engagements and arranging the tracks

passing the filter into priority order. The

facilities provided to the User in setting these

rules are very extensive, so that the filtering

and ordering can be performed, based on a

large number of criteria. The rules can also

take into account the way other equipments

are deployed, via the mark�ups in the

situational awareness, so that co�ordinated

behaviour can be produced. In addition,

timing delays can be added to the

equipment controllers to represent the

latencies in real systems.

Thus, the User can configure a generic data set

to define a particular type of platform by specifying

its superstructure, signatures and equipment fits

and setting up the rules to control its behaviour. It

should also be noted that the integrated platform

model is recursive in the sense that munitions

deployed by platforms, such as missiles and

decoys, can also be described by different data

configurations of the integrated platform model.

Thus, extremely complex scenarios can be

simulated in SIMTEC by data configuring the

single, generic integrated platform model.



D. F. BUCKLE32

GEC REVIEW, VOL. 14, NO. 1, 1999

Standard Software Reuse

Techniques

SIMTEC is an initiative in software reuse. This is

achieved by using all of the `standard' reuse

techniques in an integrated fashion (often using

innovative technology) that capitalizes on the

advantages of each technique whilst minimizing

its disadvantages. The `standard' software reuse

techniques employed are:

� library of reusable modules,

� plug�and�play interfaces,

� data configurability, and

� COTS tools.

The idea behind the first technique is to develop

a library of software modules that can be used in

many different applications. This technique has

two great advantages:

� it achieves fine�grain reuse - that is, the

modules can consists of just a few tens or

hundreds of lines; and

� it can be applied to any problem (at least

when an OO approach is used).

There are, however, three disadvantages with a

library approach:

� it takes power away from the User because it

requires a Developer to link together the

library modules;

� libraries produced by different vendors are

usually mutually incompatible, and the

Developer often has to `buy�in' to one

particular library and discard the others;

and

� the approach does not guarantee that

different models constructed from the same

library modules are compatible with one

other.

The provision of plug�and�play interfaces has

complementary advantages and disadvantages.

Its main disadvantages are that:

� it is not universally applicable - that is,

plug�and�play works well only when there

is some `natural' division between

components existing in the problem space

(it is the job of the Developer to find these

natural interfaces);

� it usually provides only coarse grain reuse -

that is, the components it unites are often

very large and, indeed, may contain

significant areas of overlap; and

� it can introduce inflexibility and overheads

(although these problems can be minimized

by innovative approaches).

Plug�and�play interfaces do have advantages,

however, in that they can:

� permit the products of different vendors to be

linked - that is, they can get round the

`buy�in' problem;

� provide the discipline necessary to ensure

that models developed from different library

components can work together; and

� assist data configurability and the use of

COTS. That is, the components linked by the

interfaces can be separately configured

and/or implemented by COTS packages.

The main advantages of data configurability in

its own right is that it:

� puts power in the hands of the User, as

opposed to the Developer; and

� it can be much more efficient than

hard�coding in tailoring available

functionality to applications.

Its chief problems are that:

� the efficiency increase applies only in some

circumstances, which must be carefully

selected by the Developer; and

� it can also be quite a problem to equip the

User with the tools required to perform data

configuration in complex applications,

although, as will be seen, this is another

area where novel approaches can be used.

Perhaps the most direct way of addressing soft�

ware reuse is to take one particular problem and

provide a generic COTS product that solves it once

and for all. This is a very good solution if it works,

but historically has proved successful only with

certain problems that lend themselves to this treat�

ment. Use of COTS can also lead to the problems of

`buy�in' and the functionality of different COTS

tools may overlap.

SIMTEC Design Principles

Enabling Reuse

SIMTEC uses two main principles - an OO tool�

kit approach and the use of smart noticeboard

plug�and�play interfaces - to implement the four

standard software reuse techniques discussed

above. These two principles enable all of the four

standard techniques to be implemented in an

integrated fashion that capitalizes on the advan�

tages of each technique, whilst minimizing its

disadvantages.

The OO paradigm is applied to the whole of

SIMTEC - that is, the User Environment, the Battle�

space Model, the plug�and�play interfaces and the

integrated platform model application. A `toolkit'



33THE SIMTEC SIMULATION FRAMEWORK

GEC REVIEW, VOL. 14, NO. 1, 1999

approach to OO is used whereby several rules of

good practice are applied to ensure that the

objects are (i) small code modules, typically of the

order of 100 lines, and (ii) designed as `servers' so

they act like tools in a toolkit in that they offer

services to other objects, their `clients' but are

unaware of the nature or structure of those clients.

Application of the toolkit approach causes the

whole of SIMTEC to have the form of a large library

of small toolkit objects. This is represented in fig. 3

using building blocks to represent the toolkit

objects. The toolkit objects fall into a loose hier�

archy with objects higher in the hierarchy using

the services of ones lower down to build up in�

creasingly sophisticated functionality, repre�

sented in �fig. 3 by layers of building blocks put one

on top of the other. Existing COTS tools are used

where applicable to support the toolkit objects.

The OO toolkit approach turns one of the

conventional problems with libraries, namely

their limited applicability, on its head, because the

entire program is a library! However, the other

disadvantages, namely the need to `buy�in' to the

library and the problems of model incompatibility

remain.

Plug�and�play interfaces are used to get around

the incompatibility difficulties. With the toolkit

approach, plug�and�play interfaces are implem�

ented by objects like everything else. That is, there

is no structural difference between the interfaces

and the rest of the code. The interfaces exhibit

themselves only as usage patterns within the

interactions between objects - that is, the fact that

some objects, the `interfaces', are choke points in

the interaction patterns. This removes one of the

potential disadvantages with plug�and�play inter�

faces, namely their overheads, but does not, by

itself, make the interfaces more flexible.

Although similar to any other code structure in

SIMTEC, the plug�and�play interfaces are, of

course, designed as such by the Developer. In

SIMTEC a `smart noticeboard' design pattern is

used to improve the flexibility of the interfaces. This

involves:

� making the interfaces globally�visible

areas, so they become `noticeboards'; and

� posting information on the noticeboards as

objects - that is, entities with both data and

functionality - so the noticeboards become

`smart'.

Posting objects on noticeboards improves flexi�

bility because client objects reading the notice�

boards can take as much or little of the information

as they required (and in fact it is also possible to

post multiple descriptions of the same phenomena

at different fidelity levels).

Smart noticeboards do not, however, remove the

need to choose carefully the areas where plug�

and�play interfaces are applied. The interfaces

used in SIMTEC are shown in fig. 4 and discussed

below.

� Within the User Environment, a `Projection'

interface is used to separate out the

functionality, or `Control' element, from the

screen display, or `MMI' element. Here the

information and actions provided by the

Control are globally available and are then

`projected' onto the GUI. This has the

advantage that as soon as new control

functionality is added, in C++, new buttons

and/or windows are automatically

generated for display.

� The Model Map interface separates the

Modelling Element from the User

Environment. As previously explained, this

map holds a complete data description of all

the modelling objects. In addition, however,

it also has the functionality to analyse

relationships between objects - for

3 Library structure of SIMTEC



D. F. BUCKLE34

GEC REVIEW, VOL. 14, NO. 1, 1999

4 Plug-and-play interfaces in SIMTEC

example, the tree of related objects that

comprise the integrated platform model -

and invoke routines knowing only the name

of the routine and the I/O parameters. This

enables the User Environment to execute

simulation runs by:

- invoking the necessary routines to set up

the battlesapce environment and create

all the platforms at the start of the

scenario (using the description of the

scenario stored in the SIMTEC database

as shown in fig. 1);

- running the simulation by driving the

event list to advance simulation time;

and

 - calling the relevant routines to log the

data and drive the displays requested

by the User.

� Within the modelling code, six smart

noticeboards are used to handle

inter�platform interactions covering:

- platform motion,

- electromagnetic interactions,

- communications,

- command and control,

- kills and vulnerabilities, and

- electronic warfare.

� In addition, smart noticeboards are used to

implement the intra�platform plug�and�

play interfaces within the integrated

platform model application, as discussed

earlier and shown in fig. 2.

It is not possible to discuss all the above inter�

faces in detail in this paper. However, fig. 5 gives an

example of two very important cases, namely the

way in which motion and electromagnetic

interactions between platforms are described.

As shown in fig. 5, a SIMTEC model of a platform,

such as the integrated platform discussed earlier,

posts a description of the motion of the platform

centroid as a moving body model. This describes

motion as a function of time in six degrees of

freedom (6 dof) and applies `until further notice'.

The moving body description can be complex

and contain discontinuities - for example, a multi�

waypoint trajectory with sharp corners as in fig. 5.

Because functionality as well as data are posted,

however, objects reading the noticeboard (for

example, other instances of integrated platform)

can always obtain exact (6 dof) data at any point in

simulation time that they require. In addition, the

(6 dof) locations of the platform mounting points are

also posted on the Motion Noticeboard, so reading

objects know the precise position and orientation

of all the signatures and equipments on the

platform.



35THE SIMTEC SIMULATION FRAMEWORK

GEC REVIEW, VOL. 14, NO. 1, 1999

5 Examples of smart noticeboards

As shown on fig. 5, some items of equipment can

also emit electromagnetic radiation. These

emissions are specified by objects describing the

emitted waveforms, antenna patterns and scan

patterns, all of which are functions of time. Thus, at

any point any object reading the inter�platform

noticeboards has access to a full description of the

factors influencing the electromagnetic signals in

the battlespace and can, as required, call up either

simple ̀ cookie cutter' models of detection or access

the detailed electromagnetic propagation

representations in the supplied Battlespace Model.

Integrated Approach

The use of the toolkit approach and smart notice�

boards is integrated with the use of COTS and data

configurability so that the benefits of all the soft�

ware reuse techniques reinforce one another.

Existing COTS tools are used where appropriate,

but some parts of SIMTEC can themselves be

considered COTS products because they provide

generic solutions, namely:

� the User Environment, which is completely

generic because of its use of the Model Map

smart noticeboard; and

� the Battlespace Model (shown in fig. 4),

which represents the physical environment

in which the interactions on the

inter�platform noticeboards occur.

Data configurability is a natural outcome of the

OO toolkit approach when coupled with a model�

sensitive User Environment.

The way the OO paradigm unites data and

functionality means that it possible to data confi�

gure operations. For example, the `rules' used in

the integrated platform models to form priority lists

are actually algorithms for filtering and sorting

tracks. Also, the OO mechanisms of `inheritance'

and `polymorphism' allow many different objects

with different behaviours to have the same

interfaces. Thus, the User can choose between

alternative behaviour patterns as part of data

configuration. The toolkit approach causes the

objects available for data configuration to be small

and relatively self�contained, thus improving the

granularity with which the data configurations

can be performed. A model�sensitive User

Environment is required, however, to enable the

User to access this fine granularity.



D. F. BUCKLE36

GEC REVIEW, VOL. 14, NO. 1, 1999

Developing SIMTEC Models

Although SIMTEC models are highly data confi�

gurable, this does not, of course, obviate the need

for code development. It is important to stress that,

from the Developer's point of view, SIMTEC is a

clear box facility designed to produce fine grain

software reuse and assist the internal structure of

the models to be produced, as well as providing

interfaces to allow different models to interact.

Although the Developer has to write some code

from scratch when producing the internal struc�

ture of a new model, it will often be the case that

much of the required functionality can be obtained

from the existing library of toolkit objects. The

Developer is free to use these objects as required

(that is, SIMTEC is ̀ clear box'). Also, as all the toolkit

objects are small, primitive items of functionality,

typically about 100 lines long, they can address the

Developer's precise requirements (that is, the

reuse is `fine grain'). The Developer may also

construct new toolkit objects that can then be

added to the general library.

In addition, provided the new model uses the

existing plug�and�play interfaces, it will be able to:

� use the COTS facilities of the SIMTEC

framework, such as the User Environment

and the Battlespace/propagation models,

thus reducing the development effort; and

� interact with all the models produced

by other Developers, thereby greatly

increasing its usefulness.

In fact, the plug�and�play interfaces can be

extended and adapted by Developers and,

provided this is done in a controlled fashion, the

ability of all models to interact can be maintained.

A pool of SIMTEC Developers is desirable in

order to set up a mutually�reinforcing improve�

ment cycle, where each new project contributes

new toolkit objects and models and provides the

motivation for upgrading the COTS facilities and

extending the interfaces. Developers must, how�

ever, ̀ buy in' - that is, commit to using SIMTEC - in

order to achieve the benefits of its clear box, fine

grain approach.

Other software reuse approaches, such as

DIS/HLA, have concentrated on linking together

different products via machine and language�

independent plug�and�play interfaces. Although

this avoids the need to buy�into any one product, it

is fundamentally black box in nature and there�

fore produces only coarse grain reuse when

compared with SIMTEC.

SIMTEC has, in fact, been linked to an

experimental model federation via the HLA. It may

be, therefore, that fine�grain/buy�in approaches

and coarse�grain/linking techniques are

complementary. That is, SIMTEC could be used to

produce the models that are then linked with other

systems via HLA/DIS.

Conclusions

The development of SIMTEC has shown that an

extremely high degree of software reuse is

possible. This has enabled SIMTEC to support a

wide range of modelling applications and provide

a completely generic User Environment that is

automatically configured to the modelling code.

SIMTEC's software reuse has been achieved by

(i) simultaneously applying several techniques,

(ii) undertaking development on a large enough

scale for these techniques to be effective, and

(iii) accepting certain trade�offs.

The paper has identified four main reuse

techniques:

� OO toolkit approach,

� plug�and�play interfaces,

� design for data configurability, and

� use and production of COTS tools.

It has been found that a development in excess of

100,000 C++ statements has been required to

achieve the full benefits of these techniques.

The major trade�off with the SIMTEC initiative is

that fine�grained software reuse - that is, at the

individual module level - is possible only if Devel�

opers commit, or `buy�in', to one particular frame�

work. There is little reason to suppose that it will be

possible to swop individual modules seamlessly

between frameworks any time in the near future.

Initiatives such as HLA and DIS, make different

trade�offs. Although they achieve a coarser level

of software reuse they avoid the requirement for

Developers to buy�in to individual frameworks.

This paper has argued that large frameworks that

use the right design approaches are complemen�

tary to DIS/HLA�type initiatives - that is, frame�

works can be used to construct the models linked

by DIS and HLA.

For more detailed information on the SIMTEC

framework, please contact the author.

Acknowledgements

The author would like to thank Sandy Flett of

Weapons Sector, Farnborough for initiating and

supporting the SIMTEC project. Thanks are also

due to John Witney and Ian Begg of EASAMS; the

former for project managing SIMTEC and perform�

ing much of its detailed design, and the latter for

implementing some of SIMTEC's advanced

concepts (such as the Model Map interface) as a

practical software solution.


